Rajesh Bhaskaran’s work seeks to promote the “democratization of simulation” through effective integration of simulation tools into engineering education. He directs the Swanson Lab and has helped introduce industry-standard simulation tools into Cornell courses covering fluid mechanics, heat transfer, solid mechanics, and numerical analysis. Dr. Bhaskaran has led the development of SimCafe.org as an online portal for learning and teaching finite-element and CFD simulations. SimCafe is used worldwide in courses as well as for self-paced learning by students and industry professionals. Dr. Bhaskaran has developed a unified methodology for using simulation in disparate lecture-based and lab courses. This methodology teaches students to approach simulations like an expert rather than just pushing buttons and accepting results at face value. Dr. Bhaskaran’s professional interests include engineering applications of simulation technology, reliable deployment of advanced simulation by generalist engineers, and conceptual change in learners using simulations. He has organized two international workshops on simulation in engineering curricula.
Course Overview
Rotating machinery is very important to consider in practice because it exists all around us in many forms, such as wind turbines, compressors, and fans. In this course, you will work on rotating machinery flow problems. This problem extends the same underlying physics and governing equations applied to 3D flows, with the added complexity of a moving physical body.
You are required to have completed the following courses or have equivalent experience before taking this course:
- Foundations of CFD
- 2D Laminar Flows
- 3D Turbulent Flows
Key Course Takeaways
- Construct the mathematical model underlying rotating machinery flow simulations, including governing equations, boundary conditions, physical principles, and assumptions
- Devise a solution strategy to solve the mathematical model and reduce errors introduced by your strategy
- Predict expected results using hand calculations in order to verify simulation results
- Obtain a numerical solution to the mathematical model using Ansys
- Analyze the simulation results and gain physical insights through visualization
- Defend the simulation results by undertaking a “verification and validation” procedure that includes checking consistency with the underlying mathematical model, assessing numerical errors, and comparing with hand calculations
Download Brochure
Fill out the form below to download program information and connect
with us.
Download a Brochure
Not ready to enroll but want to learn more? Download the course brochure to review program details.How It Works
Course Length
2 weeks
Effort
5-7 hours per week
Format
100% online, instructor-led
Course Author
Rajesh Bhaskaran
Swanson Director of Engineering Simulation
Cornell College of Engineering
Swanson Director of Engineering Simulation, Cornell Engineering
Who Should Enroll
- Engineers who work with computer-aided design (CAD) software
- Engineering analysts
- Simulation engineers
- Mechanical engineers
- Naval engineers
- Aerospace engineers
- Physicists
Get It Done
100% Online
100% Online
Our programs are expressly designed to fit the lives of busy professionals like you.
Learn From
cornell's Top Minds
cornell's Top Minds
Courses are personally developed by faculty experts to help you gain today's most in-demand skills.
Power Your
career
career
Cornell's internationally recognized standard of excellence can set you apart.
Stack To A Certificate
Request Information Now by completing the form below.
Act today—courses are filling fast.