David R. Schneider graduated from Rensselaer Polytechnic Institute in Chemical Engineering in 1999, attended Columbia University Film M.F.A. Program in 2001, and earned his Masters and PhD from Cornell University in Mechanical Engineering with a concentration in Controls & Dynamics in 2007. David has taught at both Cornell and Columbia University. His most prominent research is his creation of the G*TA (G-Star-T-A) task allocation algorithm and his work as Program Manager of the Cornell RoboFlag program, with notable applications including AFRL UAV controls and NASA/NOAA unmanned boat designs. With a strong focus on education, David’s endeavors have included the creation of the Intel-Cornell Cup, Innovative Embedded Design National Competition; leading Cornell University Sustainable Design (CUSD); and the broader impacts video game creation for the NSF Expeditions in Computing Grant on Computational Sustainability. David has led the efforts to make Cornell the first university to officially partner with Make: and is a leader in the Higher Education Maker Alliance working with the White House Office of Science and Technology Policy. He has also led with Make: the re-creation of the national entrepreneurial competition “Pitch Your Prototype” and is a leading faculty member behind the American Society of Engineering Education, Community Engaged Division Film Festival national competition. David was also a screenwriter for Walt Disney Attractions Television Production.
Assessing Your System’s Performance and ValueCornell Course
Course Overview
Decision matrices are one of the most commonly used engineering tools. They are used to help rationalize why one option should be chosen over another, and you can find some form of them in just about every business, industry, and government. Decision matrices may not always be identified as such but can be used as part of a trade study, competitive analysis, or options review. As prevalent as these matrices are, they are also one of the most misused tools out there.
In this course, you begin by developing performance metrics. These performance metrics will allow you to objectively determine the value of any potential solution to a challenge. You will then develop a decision matrix around these metrics by applying justifiable weights and tuning the metrics to account for the needs and priorities of specific customers. By learning how to create a superior decision matrix with these well-defined performance metrics, you can achieve tremendous influence on a project even if you do not have official authority.
Key Course Takeaways
- Determine criteria necessary to measure value
- Determine objective means to measure the criteria
- Establish relative importance for criteria
- Combine all factors into a Pugh Decision Matrix
- Interpret the results of the Decision Matrix to measure performance
How It Works
Course Author
Who Should Enroll
- Any manager from a wide variety of organization types, roles, and functional areas who is responsible for serving external and internal customers.
- Anyone whose staff or unit is responsible for providing a consistent and high level of service, making things easy for customers, and delivering on the promise of a quality experience every time.
- Students may belong to service-oriented organizations including for-profits, NGOs, and governmental agencies.
100% Online
cornell's Top Minds
career