Rajesh Bhaskaran’s work seeks to promote the “democratization of simulation” through effective integration of simulation tools into engineering education. He directs the Swanson Lab and has helped introduce industry-standard simulation tools into Cornell courses covering fluid mechanics, heat transfer, solid mechanics, and numerical analysis. Dr. Bhaskaran has led the development of SimCafe.org as an online portal for learning and teaching finite-element and CFD simulations. SimCafe is used worldwide in courses as well as for self-paced learning by students and industry professionals. Dr. Bhaskaran has developed a unified methodology for using simulation in disparate lecture-based and lab courses. This methodology teaches students to approach simulations like an expert rather than just pushing buttons and accepting results at face value. Dr. Bhaskaran’s professional interests include engineering applications of simulation technology, reliable deployment of advanced simulation by generalist engineers, and conceptual change in learners using simulations. He has organized two international workshops on simulation in engineering curricula.
Course Overview
Vibration is an important consideration in many engineering applications, including compressors, turbines, gears, and bearings. Modal analysis is used to predict the natural frequencies of the structure. Knowing these frequencies, the engineer can design the structure to avoid resonance leading to catastrophic failure. You will explore the big ideas in modal analysis by extending 3D elasticity concepts then apply those big ideas to solve a practical problem in Ansys: predicting the natural frequencies and mode shapes for a turbine disk with blades.
Professor Bhaskaran will walk you through solving the “turbine disk with blades" example problem in Ansys. The geometry will be provided to you as a CAD file. As you set up and solve this vibration simulation in Ansys, you'll continue to refer back to the big ideas in modal analysis to make sense of the Ansys inputs and outputs. You will follow along in Ansys as Professor Bhaskaran demonstrates best practices for simulating vibration problems. Your final simulation will be a product of your own efforts and will give you the confidence to create reliable vibration simulations.
You are required to have completed the following courses or have equivalent experience before taking this course:
- Conceptual Foundations of Finite Element Analysis
- Ansys Mechanical Concepts and Implementation
- Elasticity Applications
- Beam and Shell Applications
Key Course Takeaways
- Construct the mathematical model underlying modal analysis for predicting natural frequencies and the numerical solution strategy used to solve the model
- Solve an example problem in Ansys involving a turbine disk with blades undergoing vibration
How It Works
Course Author
Who Should Enroll
- Mechanical engineers
- Simulation engineers
- Civil engineers
- Aerospace engineers
- Prospective engineers
- Biomedical engineers
- Design engineers
- Undergraduate and graduate students in engineering
100% Online
cornell's Top Minds
career