David R. Schneider graduated from Rensselaer Polytechnic Institute in Chemical Engineering in 1999, attended Columbia University Film M.F.A. Program in 2001, and earned his Masters and PhD from Cornell University in Mechanical Engineering with a concentration in Controls & Dynamics in 2007. David has taught at both Cornell and Columbia University. His most prominent research is his creation of the G*TA (G-Star-T-A) task allocation algorithm and his work as Program Manager of the Cornell RoboFlag program, with notable applications including AFRL UAV controls and NASA/NOAA unmanned boat designs. With a strong focus on education, David’s endeavors have included the creation of the Intel-Cornell Cup, Innovative Embedded Design National Competition; leading Cornell University Sustainable Design (CUSD); and the broader impacts video game creation for the NSF Expeditions in Computing Grant on Computational Sustainability. David has led the efforts to make Cornell the first university to officially partner with Make: and is a leader in the Higher Education Maker Alliance working with the White House Office of Science and Technology Policy. He has also led with Make: the re-creation of the national entrepreneurial competition “Pitch Your Prototype” and is a leading faculty member behind the American Society of Engineering Education, Community Engaged Division Film Festival national competition. David was also a screenwriter for Walt Disney Attractions Television Production.
Implementing the Quality Function Deployment MethodCornell Course
Course Overview
The quality function deployment (QFD) is one of the most effective methods for relating performance metrics that a customer cares about to technical criteria and engineering parameters and ultimately, the design targets a team needs to build their solution. You will learn that the QFD expresses this relationship in a way that allows you to compare your concepts to your competitors' and to understand the trade-offs between engineering parameters and their influence on performance criteria. This equips you to argue effectively that your design targets will lead your team to a winning solution.
In this course, you will go through a detailed, step-by-step process to build a QFD for your own project. You will examine the interrelationship between different engineering characteristics. You will use all this information, along with factors such as cost and technical difficulty, to establish strong design targets and get an estimate of your final system's performance.
You are required to have completed the following course or have equivalent experience before taking this course:
- Assessing Your System's Performance and Value
Key Course Takeaways
- Define key design parameters
- Determine impact of each parameter
- Benchmark against competitors
- Determine initial targets for design parameters
- Develop guidelines for resource allocation that supports targets
How It Works
Course Author
Who Should Enroll
- Any manager from a wide variety of organization types, roles, and functional areas who is responsible for serving external and internal customers.
- Anyone whose staff or unit is responsible for providing a consistent and high level of service, making things easy for customers, and delivering on the promise of a quality experience every time.
- Students may belong to service-oriented organizations including for-profits, NGOs, and governmental agencies.
100% Online
cornell's Top Minds
career