David R. Schneider graduated from Rensselaer Polytechnic Institute in Chemical Engineering in 1999, attended Columbia University Film M.F.A. Program in 2001, and earned his Masters and PhD from Cornell University in Mechanical Engineering with a concentration in Controls & Dynamics in 2007. David has taught at both Cornell and Columbia University. His most prominent research is his creation of the G*TA (G-Star-T-A) task allocation algorithm and his work as Program Manager of the Cornell RoboFlag program, with notable applications including AFRL UAV controls and NASA/NOAA unmanned boat designs. With a strong focus on education, David’s endeavors have included the creation of the Intel-Cornell Cup, Innovative Embedded Design National Competition; leading Cornell University Sustainable Design (CUSD); and the broader impacts video game creation for the NSF Expeditions in Computing Grant on Computational Sustainability. David has led the efforts to make Cornell the first university to officially partner with Make: and is a leader in the Higher Education Maker Alliance working with the White House Office of Science and Technology Policy. He has also led with Make: the re-creation of the national entrepreneurial competition “Pitch Your Prototype” and is a leading faculty member behind the American Society of Engineering Education, Community Engaged Division Film Festival national competition. David was also a screenwriter for Walt Disney Attractions Television Production.
Course Overview
Everyone worries about risk. How do we identify risks? Is this issue more risky than another? Or even worse, "Sorry, but this project sounds too risky. We can't approve it." Wouldn't it be better if you could show an objective understanding of risks, how to plan to address them, and be able to justify the decisions behind those plans?
In this course, you will learn how to assess risk with failure modes and effect analysis. You will evaluate different losses of functionality that your system could experience, and determine the possible effects and related causes. You will then develop objective ways of measuring the severity and likelihood of each of these causes, ultimately to develop a quantifiable measure of system risk. You will produce this analysis in a way that not only allows you to make decisions on how to handle these risks, but also justify your actions to others. This course equips you to recognize risk and reduce it.
Key Course Takeaways
- Identify potential system failure modes and their causes
- Complete a formal assessment of likelihood, impact, and overall risk
- Propose corrective actions
- Track mitigation efforts throughout and after the design process
How It Works
Course Author
Who Should Enroll
- Any manager from a wide variety of organization types, roles, and functional areas who is responsible for serving external and internal customers.
- Anyone whose staff or unit is responsible for providing a consistent and high level of service, making things easy for customers, and delivering on the promise of a quality experience every time.
- Students may belong to service-oriented organizations including for-profits, NGOs, and governmental agencies.
100% Online
cornell's Top Minds
career